. A C ] 1 2 Ju n 20 05 COMBINATORIAL SECANT VARIETIES
نویسنده
چکیده
The construction of joins and secant varieties is studied in the combinatorial context of monomial ideals. For ideals generated by quadratic monomials, the generators of the secant ideals are obstructions to graph colorings, and this leads to a commutative algebra version of the Strong Perfect Graph Theorem. Given any projective variety and any term order, we explore whether the initial ideal of the secant ideal coincides with the secant ideal of the initial ideal. For toric varieties, this leads to the notion of delightful triangulations of convex polytopes.
منابع مشابه
ar X iv : m at h / 05 06 22 3 v 2 [ m at h . A C ] 1 3 Se p 20 05 COMBINATORIAL SECANT VARIETIES
The construction of joins and secant varieties is studied in the combinatorial context of monomial ideals. For ideals generated by quadratic monomials, the generators of the secant ideals are obstructions to graph colorings, and this leads to a commutative algebra version of the Strong Perfect Graph Theorem. Given any projective variety and any term order, we explore whether the initial ideal o...
متن کاملJu n 20 05 Fujita ’ s very ampleness conjecture for singular toric varieties
We present a self-contained combinatorial approach to Fujita’s conjectures in the toric case. Our main new result is a generalization of Fujita’s very ampleness conjecture for toric varieties with arbitrary singularities. In an appendix, we use similar methods to give a new proof of an analogous toric generalization of Fujita’s freeness conjecture due to Fujino.
متن کاملar X iv : m at h / 06 11 69 6 v 2 [ m at h . A C ] 1 3 A pr 2 00 7 PROLONGATIONS AND COMPUTATIONAL ALGEBRA
We explore the geometric notion of prolongations in the setting of computational algebra, extending results of Landsberg and Manivel which relate prolongations to equations for secant varieties. We also develop methods for computing prolongations which are combinatorial in nature. As an application, we use prolongations to derive a new family of secant equations for the binary symmetric model i...
متن کاملN ov 2 00 6 PROLONGATIONS AND COMPUTATIONAL ALGEBRA
We explore the geometric notion of prolongations in the setting of computational algebra, extending results of Landsberg and Manivel which relate prolongations to equations for secant varieties. We also develop methods for computing prolongations which are combinatorial in nature. As an application, we use prolongations to derive a new family of secant equations for the binary symmetric model i...
متن کاملSecant Varieties of Segre-veronese Varieties
In this paper we study the dimension of secant varieties of Segre-Veronese varieties P × P embedded by the morphism given by O(1, 2). Given the dimensions m, n, we provide two functions s(m, n) and s(m, n), such that the s secant variety is nondefective, i.e. it has the expected dimension, if s ≤ s(m, n) or s ≥ s(m, n). Finally, we present a conjecturally complete list of defective secant varie...
متن کامل